Introduction to OpenCL

Alexey A. Romanenko

arom(@ccfit.nsu.ru
Novosibirsk State University

OpenCL (Open Computing Language)

‘\

* A standard based upon C for portable parallel applications.

* Task parallel and data parallel applications

* Focuses on multi platform support (multiple CPUs, GPUs, ...)
* Development initiated by Apple.

* Developed by Khromos group who also managed OpenGL

* OpenCL 1.0 2008. Released with Max OS 10.6 (Snow Leopard)

* OpenCL 1.1 June 2010

+ Similarities with CUDA.

OpenCL Timeline

L U U O Ul U Jodl Jd U D1 1Ad1 ©U U\

* Apple’s Mac OS X Snow Leopard will in

- Improving speed and responsiveness for a wide spectrum of applications

* Multiple OpenCL implementations expected in the next 12

months
- On diverse platforms

OpenCL
Apple works working Khronos
with AMD, group publicly
Intel, NVIDIA develops releases
and others on draft into OpenCL as
draft proposal cross-vendor royalty-free
| Juno8 specification Octo8 speciflcation May09
t t Dec08 t
Apple proposes Working Khronos to
OpenCL Group sends release
working group completed conformance tests
and contributes draft to to ensure high-
draft Khronos quality
specification to Board for implementations

Khronos Ratification

Mogenb OpenCL

S R

o Platform Model

o Memory Model

« Execution Model

« Programming Model

OpenCL Platform Model

Processing

Element \

Host

Compute Unit Compute Device

* One Host + one or more Compute Devices
- Each Compute Device is composed of one or more Compute Units
- Each Compute Unit is further divided into one or more Processing Elements

OpenCL Memory Model

Rel d ist Private Private Private Private
) elaxea consistency Memory Memory Memory Memory
| 1 | |

+ Multiple distinct address spaces o LYk M| [oREem ! [MerEm ™

- Address spaces can be collapsed depending on the

device’s memory subsystem

« Address spaces

- Private - private to a work-item
- Local - local to a work-group Global / Constant Memory Data Cache

- Global - accessible by all work-items in all work- ~ Compute Device

groups
- Constant - read only global space I

* Implementations map this hierarch

ompute Device Memory

- To available physical memories

Memory Consistency

- State of memory visible to a work- |tem notgu

across the collection of work-items at all times

Memory has load/store consistency within a work-item

Local memory has consistency across work-items within a work-
group at a barrier

Global memory is consistent within a work-group at a barrier, but
not guaranteed across different work-groups

Memory consistency for objects shared between commands
enforced at synchronization points

OpenCL Execution Model

OpenCL Program: \
- Kernels
- Basic unit of executable code — similar to C functions, CUDA kemesﬁ
- Data-parallel or task-parallel

- Host Program
- Collection of compute kernels and internal functions
- Analogous to a dynamic library

« Kernel Execution
- The host program invokes a kernel over an index space called an NDRange
- NDRange, “N-Dimensional Range”, can be a 1D, 2D, or 3D space

- Asingle kernel instance at a point in the index space is called a work-item
- Work-items have unique global IDs from the index space

- Work-items are further grouped into work-groups
- Work-groups have a unique work-group 1D
- Work-items have a unique local ID within a work-group

Kernel Execution

work-group size Sx

Le . |
e -
,,' work-group (w, wy)
7’
r
'
’ work-item work-item
o (w,r sx*.sx. wy Sy¢s)) ("x Sx+sx. wy sy¢sy)
7’
,’ (51- s’) =(0, 0) (sx, s,):(sx-v. 0)
7
7/
¥ 7 P
I S
AT
A 1 -
work-item work-item
NDRange size Gy (Wy Sy#sy. W, Syes) (Wy Sy#5,. W, S +5)
TA [m g TR (S 8y} =(0.8,1) (5y.5,) = (5,1 S,71)
1 o

| -
I

X

NDRange size Gy

* Total number of work-items =G, * G,
* Size of each work-group =S, * S,

work-group size Sy

* Global ID can be computed from work-group ID and local ID

Contexts and Queues

Contexts are used to contain and manage the state of the
“world”

« Kernels are executed in contexts defined and manipulated by

the host
- Devices
- Kernels - OpenCL functions
- Program objects - kernel source and executable
- Memory objects

« Command-queue - coordinates execution of kernels
- Kernel execution commands
- Memory commands: Transfer or map memory object data
- Synchronization commands: Constrain the order of commands

* Applications queue instances of compute kernel execution
- Queued in-order
- Executed in-order or out-of-order
- Events are used to synchronization execution instances as appropriate

Data-Parallel Model

Must be implemented by all OpenCL compute devices

Define N-Dimensional computation domain
- Each independent element of execution in an N-Dimensional domain is called a work-item
- N-Dimensional domain defines total # of work-items that execute in parallel
= global work size

Work-items can be grouped together — work-group
- Work-items in group can communicate with each other
- Can synchronize execution among work-items in group to coordinate memory access

Execute multiple work-groups in parallel
- Mapping of global work size to work-group can be implicit or explicit

Programming Model

\

Task-Parallel Model

« Some compute devices can also execute task-parallel compute
kernels

« Execute as a single work-item
- A compute kernel written in OpenCL
- Anative C/ C++ function

ram Structure

‘
* Host program

- Query compute devices

-__Create contexts

- Create memory objects associated to contexts
- Compile and create kernel program objects

- Issue commands to command-queue :
- Synchronization of commands Runtime
- Clean up OpenCL resources

« Kernels
- (code with some restrictions and extensions

A 4

Platform Layer

A 4

v

Language

OpenCL C Language Restrictions

Pointers to Tu

« Pointers to pointers allowed within a kernel, but not as an
argument

« Bit-fields not supported

 Variable-length arrays and structures not supported

« Recursion not supported

« Writes to a pointer of types less than 32-bit not supported
« Double types not supported, but reserved

« 3D Image writes not supported

« Some restrictions are addressed through extensions

OpenCL vs. CUDA

e Cfor CUDA Kernel Code: —

__global wvoid
vectorAdd (const float * a, const float * b, float * c¢){
// Vector element index
int nIndex = blockIdx.x * blockDim.x + threadIdx.x;
c[nIndex] = al[nIndex] + b[nIndex];

)
« OpenCL Kernel Code

__kernel void
vectorAdd(global const float * a,
__global const float * Db,
__global float * ¢){
// Vector element index
int nIndex = get global 1d(0);
c[nIndex] = a[nIndex] + b[nIndex];

Group and grid size in OpenCL
S R

e get local 1d()

e get work dim()
e get global size()
e get global 1d()

OpenCL vs. CUDA. Initialization
. CUDA ‘\

culnit (0);
cuDeviceGet (&hDevice, 0);
cuCtxCreate (&hContext, 0, hDevice);

« OpenCL

cl context hContext;
hContext = clCreateContextFromType (0, CL DEVICE TYPE GPU,
0, 0, 0);

size t nContextDescriptorSize;
clGetContextInfo (hContext, CL CONTEXT DEVICES,
0, 0, &nContextDescriptorSize);
cl device 1d * aDevices = malloc (nContextDescriptorSize);
clGetContextInfo (hContext, CL CONTEXT DEVICES,
nContextDescriptorSize, aDevices, 0);
cl command queue hCmdQueue;

hCmdQueue = clCreateCommandQueue (hContext, aDevices[0],
O/O);

OpenCL vs. CUDA. Creating kernel

‘\

« CUDA

CUmodule hModule;
cuModuleload (&hModule, “vectorAdd.cubin”);
cuModuleGetFunction (&hFunction, hModule, "vectorAdd");

« OpenCL Kon owwmnGkm
KonnyecTtBo CTPOK
cl program hProgram;

hProgram = clCreateProgramWithSource (hContext, 1,

sProgramSource, O,) ;
clBuildProgram(hProgram, 0O, NULL, NULL, NULL, NULL);
Ko owwmnbku
cl kernel hKernel; \\\\\

hKernel = clCreateKernel (hProgram, “vectorAdd”, 0);

OpenCL vs. CUDA. Memory

allocation

‘\

« CUDA

CUdeviceptr pDevMemA, pDevMemB, pDevMemC;

cuMemAlloc (&pDevMemA, cnDimension * sizeof (float));
cuMemAlloc (&pDevMemB, cnDimension * sizeof (float));
cuMemAlloc (&pDevMemC, cnDimension * sizeof (float));

// copy host vectors to device

cuMemcpyHtoD (pDevMemA, pA, cnDimension * sizeof (float));
cuMemcpyHtoD (pDevMemB, pB, cnDimension * sizeof (float));

OpenCL vs. CUDA.

Memory allocation

« OpenCL ‘\

cl mem hDevMemA, hDevMemB, hDevMemC;
hDevMemA = clCreateBuffer (hContext,
CL MEM READ ONLY |
CL MEM COPY HOST PTR,
- B - cnDimension * sizeof (cl float),
PA,
0) 7

hDevMemB = clCreateBuffer (hContext, Koa ownbku

CL MEM READ ONLY |
CL MEM COPY HOST PTR,

cnDimension * sizeof (cl float),

PA, Kog, oLwmbkm
0)%
hDevMemC = clCreateBuffer (hContext,
CL MEM WRITE ONLY,
cnDimension * sizeof(cl float),0, 0);

OpenCL vs. CUDA.

Kernel parameters

‘\

« CUDA
cuParamSeti (cuFunction, O
cuParamSeti (cuFunction, 4, pDevMemB) ;
8
n

, pDevMemA) ;

cuParamSeti (cuFunction, , pDbevMemC) ;
cuParamSetSize (cuFunction, 12);

o OpenCL:

clSetKernelArg (hKernel, 0, sizeof (cl mem),
volid *) &hDevMemA) ;

(
clSetKernelArg (hKernel, 1, sizeof (cl mem),
(void *) &hDevMemB) ;

clSetKernelArg (hKernel, 2, sizeof (cl mem),
(void *) &hDevMemC) ;

OpenCL vs. CUDA.

Launching kernel

‘\

- CUDA

cuFuncSetBlockShape (cuFunction, cnBlockSize, 1, 1);
cuLaunchGrid (cuFunction, cnBlocks, 1);

o OpenCL

clEnqueueNDRangeKernel (hCmdQueue, hKernel, 1, 0O,
&cnDimension, &cnBlockSize, 0, 0, 0);

OpenCL vs. CUDA. Copy result back

‘\

« CUDA

cuMemcpyDtoH ((vo1d*)pC, pDevMemC,
cnDimension*sizeof (float)) ;

« OpenCL
clEnqueueReadBuffer (hContext, hbDeviceC, CL TRUE, O,

cnDimension * sizeof (cl float),
Pcr OI OI 0);

Release resourses

« OpenCL ——

clReleaseMemObject (hDevMema) ;
clReleaseMemObject (hDevMemB) ;
clReleaseMemObject (hDevMemC) ;
free (aDevices);
clReleaseKernel (hKernel);

clReleaseProgram (hProgram);
clReleaseCommandQueue (hCmdQueue) ;
clReleaseContext (hContext);

Recourses OpenCL

\

o Khronos OpenCL Homepage
http://www.khronos.org/opencl

« OpenCL 1.0 Specification
http://www.khronos.org/registry/cl

. OpenCL at NVIDIA
http://www.nvidia.com/object/cuda opencl.html

